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Managing marine species effectively requires spatially and temporally explicit knowledge

of their density and distribution. Habitat-based density models, a type of species

distribution model (SDM) that uses habitat covariates to estimate species density and

distribution patterns, are increasingly used for marine management and conservation

because they provide a tool for assessing potential impacts (e.g., from fishery bycatch,

ship strikes, anthropogenic sound) over a variety of spatial and temporal scales.

The abundance and distribution of many pelagic species exhibit substantial seasonal

variability, highlighting the importance of predicting density specific to the season

of interest. This is particularly true in dynamic regions like the California Current,

where significant seasonal shifts in cetacean distribution have been documented at

coarse scales. Finer scale (10 km) habitat-based density models were previously

developed for many cetacean species occurring in this region, but most models

were limited to summer/fall. The objectives of our study were two-fold: (1) develop

spatially-explicit density estimates for winter/spring to support management applications,

and (2) compare model-predicted density and distribution patterns to previously

developed summer/fall model results in the context of species ecology. We used

a well-established Generalized Additive Modeling framework to develop cetacean

SDMs based on 20 California Cooperative Oceanic Fisheries Investigations (CalCOFI)

shipboard surveys conducted during winter and spring between 2005 and 2015.

Models were fit for short-beaked common dolphin (Delphinus delphis delphis), Dall’s

porpoise (Phocoenoides dalli), and humpback whale (Megaptera novaeangliae). Model

performance was evaluated based on a variety of established metrics, including the

percentage of explained deviance, ratios of observed to predicted density, and visual

inspection of predicted and observed distributions. Final models were used to produce

spatial grids of average species density and spatially-explicit measures of uncertainty.
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Results provide the first fine scale (10 km) density predictions for these species during the

cool seasons and reveal distribution patterns that aremarkedly different from summer/fall,

thus providing novel insights into species ecology and quantitative data for the seasonal

assessment of potential anthropogenic impacts.

Keywords: cetacean distribution, Dall’s porpoise, generalized additive model, habitat-based density model,

humpback whale, pelagic conservation, short-beaked common dolphin, species distribution model

INTRODUCTION

Habitat-based density models or species distribution models
(SDMs) are increasingly used for marine management and
conservation applications, including the assessment of potential
impacts from a wide range of anthropogenic activities (Louzao
et al., 2006; Benson et al., 2011; Gilles et al., 2011; Goetz
et al., 2012; Hammond et al., 2013; Redfern et al., 2013).
SDMs are effective conservation management tools because
they can be used to predict spatial and temporal changes in
species distribution patterns. For example, Hobday et al. (2010)
described a temporally flexible spatial approach to managing
the bycatch of southern bluefin tuna (Thunnus maccoyii) off
Australia using predictions from a habitat model. Gilles et al.
(2016) used SDMs to capture the seasonal distribution shifts of
harbor porpoise (Phocoena phocoena) in the North Sea to assist
in international marine spatial planning efforts. Such models
are particularly important in the marine environment because
variability in ocean conditions can result in changes in species
distribution. This is especially true in the California Current
Ecosystem, where high interannual and seasonal variability
in oceanic conditions result in marked shifts in cetacean
distribution (Dohl et al., 1978; Forney and Barlow, 1998; Forney,
2000; Becker et al., 2012, 2014; Douglas et al., 2014; Henderson
et al., 2014; Campbell et al., 2015).

As part of marine mammal and ecosystem assessments,
systematic surveys have been conducted in the California Current
since 1991, and these data have been used to develop SDMs
for many of the cetacean species known to occur in this region
(Forney, 2000; Barlow et al., 2009; Becker et al., 2010, 2012,
2014, 2016; Forney et al., 2012; Redfern et al., 2013). Density
predictions from these models have been used by the U.S. Navy
to assist in the evaluation of potential impacts on cetaceans
(U.S. Department of the Navy, 2015), to assess overlap between
fisheries and cetaceans (Saez et al., 2013; Feist et al., 2015), and
to evaluate potential ship-strike risk to large whales in waters
off Southern California (Redfern et al., 2013). However, these
models were developed only for summer/fall because weather
conditions off the majority of the U.S. west coast make systematic
ship-based surveys difficult to conduct year-round, and there
has been limited survey effort for cetaceans during the winter
and spring months (Forney et al., 2012). Although aerial surveys
have been conducted in winter/spring off California (Dohl et al.,
1983; Forney and Barlow, 1998), these surveys did not provide
enough sightings to develop robust habitat models. A year-
round telemetry-based model was recently developed for blue
whales (Hazen et al., 2016), and management requires similar
information for other species. Further, cross-season predictions

from summer/fall SDMs emphasize the need to build models
using data collected during the specific time period of interest
(Becker et al., 2014).

California Cooperative Oceanic Fisheries Investigations
(CalCOFI) cruises have been conducted quarterly off Southern
California since 1951 to monitor ocean conditions and biological
resources (Bograd et al., 2003). Systematic cetacean monitoring
was initiated in July 2004 (Soldevilla et al., 2006), providing
seasonal line-transect density and abundance estimates within
the CalCOFI study area (Douglas et al., 2014; Campbell et al.,
2015). These estimates do not explicitly consider variability in
ocean conditions, which can affect the distribution and density of
cetaceans in this region (Henderson et al., 2014). Further, these
studies provide uniform cetacean density estimates for broad
regions (i.e., minimum area = 71,407 km2) with no information
on spatial patterns; finer-scale estimates of species density are
needed to better assess potential impacts of marine activities that
may adversely affect cetaceans and to increase our ecological
understanding of species distribution patterns.

In this study, we developed predictive habitat-based models of
cetacean density using sighting data from 20 CalCOFI shipboard
surveys conducted during winter and spring between 2005 and
2015. Our objectives were two-fold: (1) develop spatially-explicit
density estimates for winter/spring to support management
applications, and (2) compare the model-predicted density
and distribution patterns to previously developed summer/fall
estimates and examine differences in the context of species
ecology. Using a well-established Generalized Additive Modeling
(GAM) framework, models were fit for three taxonomically
diverse species with sufficient sample sizes for modeling: short-
beaked common dolphin (Delphinus delphis delphis), Dall’s
porpoise (Phocoenoides dalli), and humpback whale (Megaptera
novaeangliae). Habitat variables included both static and
dynamic predictors shown to be important in previous SDMs
(e.g., Becker et al., 2014, 2016; Hazen et al., 2016). Model-
predicted density surface plots captured observed distribution
patterns for all three species and revealed unique areas of
high density within the study area. Results provide the first
spatially-explicit density predictions for these species during the
cool seasons (winter/spring), and reveal distribution patterns
that differ from those documented for summer/fall. Density
predictions from these models provide a means to both
assess potential impacts and develop mitigation measures for
these species during the winter and spring when density and
distribution patterns are markedly different from the summer
and fall. In addition, model results provide novel insights into
the seasonal changes in density and distribution patterns of these
three species off central and southern California.
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MATERIALS AND METHODS

Study Area and Field Methods
The study area encompasses the majority of CalCOFI

oceanographic sampling stations off the central and southern

California coast (Bograd et al., 2003), including ∼385,460 km2

of coastal, shelf, and pelagic habitat (Figure 1). Six transect lines

run southwest to northeast off Southern California between the

CalCOFI sampling stations, with lines increasing in length from
north to south (470–700 km; Figure 1). There are additional
CalCOFI sampling stations located along five transect lines
off central California that are surveyed less frequently than
the southern lines, and sighting data collected from these
lines have not been used in previous line-transect analyses
(Douglas et al., 2014; Campbell et al., 2015). However, since
the Point Arguello/Point Conception (34.5◦N) region is a
known biogeographic boundary (Valentine, 1973; Briggs, 1974;

Newman, 1979; Doyle, 1985), we included data collected on the
northern lines to ensure that a broader range of habitat types
was captured in the models. Due to the very limited sampling
effort west of 125◦W longitude in winter/spring (<12 km of
systematic effort along the transects, all in 2015), we clipped
the northwestern study area boundary at this longitude line
(Figure 1).

Cetacean sighting data used to build the habitat-based density
models were collected during quarterly cruises conducted from
2005 to 2015 using systematic line-transect methods (Buckland
et al., 2001). Five different research vessels were used during the
survey period, but Douglas et al. (2014) found no significant
difference in perpendicular distance to transect line for vessels
with varying platform height. All surveys were conducted in
passing mode (i.e., when a cetacean/cetacean group is sighted the
ship continues on course and is not diverted to the vicinity of the
sighting) with two dedicated observers searching for cetaceans

FIGURE 1 | CalCOFI sampling stations (yellow circles) and the approximate 385,460 km2 study area (black bold line) used to develop the winter/spring

species distribution models presented in this study. The study area was clipped at 125◦W longitude to reflect the lack of systematic survey effort west of this line

in winter/spring. Also shown is the approximate 238,495 km2 southern portion of the CalCOFI study area (hashed area encompassed by the dashed blue line) used

by Douglas et al. (2014) and Campbell et al. (2015) to develop line-transect density estimates. The southern boundary roughly follows the Unites States/Mexico border

and is consistent with that used by Becker et al. (2016) to develop the summer/fall estimates used for comparison in this study.
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using unaided eye and 7 × 50 handheld binoculars. Sighting,
group size estimates, effort, and weather data were collected and
recorded on paper forms and later entered into an electronic
record. Detailed descriptions of the survey protocol can be found
in Douglas et al. (2014).

Data Processing and Habitat Variables
Samples for modeling were created by dividing transects into
approximate 5 km segments of continuous survey effort as
described by Becker et al. (2010). To maximize samples sizes for
estimation of the detection function, all data collected in Beaufort
sea states 0–5 while observers were systematically searching for
marinemammals (“on-effort”) were used. To develop the habitat-
based density models, only the systematic effort during transits
between the CalCOFI stations was included. Species-specific
sighting information (number of sightings, mean group size)
were assigned to each segment, and habitat data were obtained
based on the segment’s geographical midpoint.

Products of the Regional Ocean Modeling System (ROMS)
from theU.C. Santa CruzOceanModeling andData Assimilation
group (Moore et al., 2011) were used as dynamic predictors
to enable comparisons to recent summer/fall SDMs (Becker
et al., 2016). The dynamic predictors are served at 10 km
spatial resolution (i.e., 100 km2). We used 8-day running
average composites centered on the date of each survey segment
to provide consistent representation of average survey-day
conditions and to ensure consistency with the Becker et al. (2016)
summer/fall habitat models. Both the “UCSC ROMS reanalysis”
(1990–2010) and the “UCSC ROMS near-real-time” (2011–2015)
outputs were used. Only those predictors consistent between the
two ROMS outputs were used: sea surface temperature (SST)
and its standard deviation [sd(SST)], mixed layer depth, potential
energy anomaly (PEA, the work per unit volume required to
redistribute the mass in a complete mixing to a depth of 300 m,
providing a robust measure of stratification), sea surface height
(SSH; with a calibration factor applied to the near-real-time
data to match the historical reanalysis dataset), and sd(SSH).
Bathymetric variables including depth, slope, and aspect were
derived from ETOPO1 (Amante and Eakins, 2009), a 1 arc-min
global-relief model. Slope was calculated using ArcGIS Spatial
Analyst (Version 10.1, ESRI).

Modeling Methods
A multi-stage modeling approach was implemented to help
reduce bias in the density estimates generated from the habitat
models. Conducting surveys in passing mode limits the ability
of observers to positively identify species, resulting in large
numbers of sightings that are not recorded to the species
level. Whale blows can be observed at greater distances and
in rougher seas than most identifying characteristics, leading
to a high proportion of “unidentified large whale” sightings.
Distinguishing between short-beaked and long-beaked common
dolphins is difficult even at moderate distances (Jefferson et al.,
2015), and when observers could not positively identify common
dolphin subspecies, the sightings were conservatively recorded
as Delphinus spp. Omitting these unidentified animals would
result in a severe underestimation of animal density; therefore,

we applied correction factors to account for unidentified animals
when estimating density in our models. Since more distant
animals are more likely to remain unidentified, this approach
required the fitting of detection functions for taxonomically
pooled species groups that included both unidentified and
identified species (e.g., Delphinus spp. and both of the Delphinus
subspecies). Our modeling approach was as follows: (1) generate
detection functions based on the pooled species groups, (2)
develop species-specific correction factors to account for the high
proportion of unidentified animals, and (3) build species-specific
habitat models and generate density estimates that incorporated
the correction factors derived in steps 1 and 2. These steps are
described in more detail below.

Step 1: Fit Detection Functions and Estimate

Effective Strip Width (ESW)
Given the influence of Beaufort sea state on detectability (Barlow
et al., 2001, 2011a; Barlow, 2015), we generated detection
functions with Beaufort sea state as a covariate from the full
(year-round) 2005–2015 CalCOFI data set (Buckland et al., 2001;
Marques et al., 2007) using the R packages mrds (v. 2.1.16)
and Distance (v. 0.9.6). Beaufort sea state 0 was combined with
Beaufort 1 because of small sample sizes in Beaufort sea state
0. To ensure statistically robust detection functions for short-
beaked common dolphin and humpback whale, and to ensure
consistency with the correction factors derived to account for
unidentified animals (see step 2 below), we pooled all Delphinus
spp. and all large whale sightings, respectively.

Detection functions were fit with half-normal and hazard-
rate key functions with no adjustment terms, and Akaike’s
information criterion (AIC; Akaike, 1973) and visual inspection
of the detection plots (Thomas et al., 2010) were used to select
the best model. Species-specific and segment-specific estimates
of ESW were then incorporated into the models based on the
recorded sea state conditions on that segment. Prior to modeling,
sighting data were truncated at the species-specific truncation
distances used to estimate ESW.

Step 2: Derive Correction Factors to Account for

Unidentified Animals
The use of passing mode during the CalCOFI surveys resulted
in a large number of unidentified large whales and Delphinus
spp. (either D. delphis delphis or D. delphis bairdii; Table 1),
which would result in a downward bias in estimated encounter
rates of humpback whales and short-beaked common dolphins.
Therefore, we applied a correction factor to take into account that
a subset of the unidentified individuals were actually humpback
whales and short-beaked common dolphins. The correction
factor c was estimated from the same sighting data used to
estimate the detection function for each species group, according
to the simplified formula:

c = 1+
tunid

ttgt + toth
(1)

where ttgt is the number of individuals identified as the target
species (humpback whale or short-beaked common dolphin), toth
is the number of individuals identified as other species within the

Frontiers in Marine Science | www.frontiersin.org 4 May 2017 | Volume 4 | Article 121

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Becker et al. Seasonal Differences in Cetacean Distributions

TABLE 1 | CalCOFI winter/spring survey data used to develop the habitat-based density models; on-effort km reflects the distance covered while two

observers were on-effort on the main transects located roughly perpendicular to the coast in sea states ≤ 5.

Year Dates On-effort km Yearly effort Northern transects Dd sites Pd sites Mn sites Unid. Delphinus sites Unid. LgWhale sites

2005 Jan 4−19 952 2,361 No 8 11 3 7 0

Apr 15−30 1,409

2006 Feb 4−25 1,212 2,550 Yes 4 12 5 3 0

Apr 1−17 1,338

2007 Jan 12−Feb 2 1,030 1,953 Yes 13 17 0 5 0

Mar 28−Apr 16 923

2008 Jan 8−24 825 1,269 No 3 4 1 5 0

Mar 25−Apr 6 444

2009 Jan 8−22 1,211 1,983 No 14 10 0 9 3

Mar 7−21 772

2010 Jan 13−Feb 4 1,194 1,194 Yes 3 1 2 7 10

2011 Jan 12−Feb 6 1,403 1,403 Yes 3 9 2 1 3

2012 Jan 27−Feb 3 360 1,178 No 3 2 0 14 23

Mar 26−Apr 3 818

2013 Jan 11−31 1,382 2,866 Yes 13 8 21 21 35

Apr 6−29 1,484

2014 Jan 29−Feb 4 508 1,460 No 27 4 8 7 19

Mar 28−Apr 17 952

2015 Jan 15−Feb 7 1,684 2,989 Yes 25 3 11 26 31

Apr 4−19 1,305

Sum 21,206 116 81 53 105 124

Entries under “northern transects” indicate if there was effort on the five northern CalCOFI transect lines (see Figure 1). The annual number of sightings (sites) of short-beaked common

dolphin (Dd), Dall’s porpoise (Pd), humpback whale (Mn), unidentified common dolphin (Unid. Delphinus), and unidentified large whale (Unid. LgWhale) are those from the on-effort

transects and truncated at the truncation distances used to estimate ESW.

broader species group, and tunid is the number of unidentified
individuals in that species group.

We also examined whether the correction factor varied by
Beaufort sea state, due to potential differences in detectability
(Barlow et al., 2001, 2011a; Barlow, 2015). For the humpback
whale model, higher multipliers were associated with higher sea
states because the proportion of unidentified whales increased
with increasing sea state. For the short-beaked common dolphin
model, the multiplier was greater in lower sea states—likely
because of a confounding effect of larger estimated group sizes
in lower sea states; therefore, we used a uniform correction
factor across all sea states for Delphinus. To correct for group
size bias in the resulting short-beaked common dolphin density
estimates, we used the “expected group size” based on regressing
the logarithm of observed group size vs. perpendicular sighting
distance (Buckland et al., 2001; Thomas et al., 2010).

Step 3: Develop Habitat Models and Estimate Density
Generalized Additive Models (GAMs; Hastie and Tibshirani,
1990) were developed in R (v. 3.1.1; R Core Team, 2014)
using the package mgcv (v. 1.8-3, Wood, 2011), which includes
cross-validation as part of the model selection process. Methods
largely followed those described in Becker et al. (2016), but
pertinent aspects are summarized here. Restricted maximum
likelihood (REML) was used to optimize the parameter estimates
as Marra and Wood (2011) found REML to perform better

than generalized cross validation. Although mgcv is robust to
correlation among predictor variables (termed “concurvity”;
Wood, 2011), we found correlations among the predictor
variables in our study to be <0.50. Thin-plate regression splines
were used for each of the nine potential habitat variables.
Automatic term selection (Marra andWood, 2011), guided by the
approximate p-values of each predictor (Wood, 2006, 2011) was
used for model selection. We used an iterative process whereby
models were initially built with all potential predictors, then non-
significant predictors (α = 0.05) were excluded and models re-fit
until all predictors were significant.

Two different species-specific modeling frameworks were
used, depending on group size characteristics. For Dall’s porpoise
and humpback whale, species with small and fairly consistent
group sizes (average Dall’s porpoise group size = 6.26, average
humpback whale group size = 1.7), the number of individuals
detected on each segment was modeled as the response variable
using a Tweedie error distribution to account for overdispersion
(Miller et al., 2013). For short-beaked common dolphin, an
encounter rate model was developed with the number of
sightings per segment modeled as the response variable using a
Tweedie error distribution. The expected group size based on the
size bias regression method (Buckland et al., 2001; Thomas et al.,
2010) was then used in the density equation below.

Density (D, the number of animals per km2) was estimated by
incorporating the model results into the line-transect equation
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(Buckland et al., 2001):

Di =
ni · si · ci

Ai
(2)

where i is the segment, n is the number of sightings on segment
i, s is the mean or size-bias corrected group size on segment i, c
is the correction factor for unidentified animals (derived in step
2 above), based on sea state conditions on segment i, and A is
the effective area searched for segment i, corrected for trackline
detection probabilities <1:

Ai = 2 · Li · ESWi · g(0)i (3)

where i is the segment, L is the length of effort segment i, ESW
is the effective strip half-width of segment i, and g(0) is the
probability of detection on the transect line for segment i. The
natural log of the effective area searched was included as an offset
in the GAMs.

Following the methods of Becker et al. (2016), we applied
segment-specific estimates of g(0) derived by Barlow (2015) from
line-transect data collected on large research vessels in the eastern
Pacific from 1986–2010. These g(0) estimates are expected to
be minimum corrections for the 2-person observer team during
CalCOFI surveys, because Barlow (2015) derived these estimates
for a 3-person observer team including two observers searching
with pedestal-mounted 25× 150 binoculars.

We used the models to predict density in each cell of a 10
× 10 km grid of the study area for distinct 8-day composites
of environmental conditions that spanned the entire survey
period. The separate grid predictions were then averaged to
produce spatial grids of mean species density and measures
of uncertainty within the full CalCOFI study area. The final
prediction grids thus provide a “multi-year average” of predicted
8-day cetacean species densities, taking into account the varying
oceanographic conditions during the 2005–2015 winter/spring
CalCOFI surveys. Sometimes the values of the habitat variables
included in the prediction grids can fall outside the range of
values used to build the models, potentially leading to model
extrapolation errors (Becker et al., 2014). To ensure we were not
generating unreasonable predictions, we inspected the range of
values for each of the habitat variables included in the full set
of 8-day composites and found that some included SST values
that were cooler than those used for model development. We
thus compared final model predictions based on the full set of
8-day composites to those made on a set that excluded the cooler
values. The results were similar, indicating these cool values did
not cause extrapolation errors, so we included the full set of 8-
day composites for our final model predictions to avoid potential
biases. The prediction grid was clipped to the boundaries of the
approximate 385,460 km2 study area and density predictions
were then visually compared to actual sightings made during the
winter/spring 2005–2015 surveys.

We assessed potential bias introduced by the habitat-based
model by comparing the models’ study area abundance estimates
to standard line-transect estimates derived from the same dataset
used for modeling. The design-based line-transect estimates were
derived from the 2005–2015 survey data using Equations (2) and

(3) above, but without the inclusion of habitat predictors. Model-
based abundance estimates for each grid cell were calculated
by multiplying the cell area (in km2) by the predicted species
density, exclusive of any portions of the cells located outside
the study area or on land. Area calculations were completed
using the packages geosphere and gpclib in R (version 2.15.0,
R Core Team, 2014). The model-based abundance estimates for
the entire study area were calculated as the sum of the individual
grid cell abundances.

Seasonal Comparison
To examine seasonal differences in density and distribution, we
compared our winter/spring model-based abundance estimates
and spatially-explicit density predictions with those derived
using similar methods from data collected in summer/fall (July–
November) during seven systematic ship surveys conducted
by NOAA Fisheries Southwest Fisheries Science Center from
1991–2009 (Becker et al., 2016). These habitat models and the
underlying methodology have been extensively validated using
cross validation (Forney, 2000; Forney et al., 2012; Barlow et al.,
2009; Becker et al., 2010, 2016), predictions on novel data sets
(Barlow et al., 2009; Becker et al., 2012, 2014; Forney et al.,
2012; Calambokidis et al., 2015), and expert opinion (Barlow
et al., 2009; Forney et al., 2012). Although the study area for
the Becker et al. (2016) summer/fall models was larger than our
CalCOFI study area, the spatial and temporal resolution of the
developed models was identical, and similar habitat predictors
were used. Thus, a comparison of abundance estimates and
spatial patterns within the geographic area of overlap between the
two studies can provide insights into potential seasonal changes
in species distribution and density in that region. To enable this
comparison, we re-calculated model-based abundance estimates
for the Becker et al. (2016) summer/fall models within the present
CalCOFI study area and examined patterns of species abundance
and distribution relative to those identified for winter/spring in
the present study.

RESULTS

A total of 21,206 km of on-effort data from 20 CalCOFI
surveys conducted during January to April in 2005–2015 were
used to develop the winter/spring habitat-based density models.
The number of sightings varied between years, particularly for
humpback whales that had as many as 21 sightings in 2013 and
no sightings during the winter/spring surveys in 2007, 2009, and
2012 (Table 1).

Detection Functions
A half-normal model with Beaufort sea state as a covariate
provided the best fit to the perpendicular distance data for all
three species (Figure 2). The truncation distance for Delphinus
spp. was 1.5 km, eliminating 19% of the most distant sightings.
This is higher than the recommended percentage of 5–15%
(Buckland et al., 2001), but in passing mode group size estimates
decreased with increasing distance, suggesting estimation bias at
larger distances. Excluding a greater percentage of sightings thus
reduced the potential bias in group size estimation. Further, a size

Frontiers in Marine Science | www.frontiersin.org 6 May 2017 | Volume 4 | Article 121

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Becker et al. Seasonal Differences in Cetacean Distributions

FIGURE 2 | Half-normal detection function models with Beaufort sea

state as a covariate fit to perpendicular sighting distances (km) for (A)

all Delphinus spp., (B) Dall’s porpoise, and (C) all large whales. The histogram

shows the distribution of observed perpendicular distances of the sightings,

binned to facilitate data analysis (Buckland et al., 2001). The dots are the

probability of detection dependent on perpendicular distance and sea state,

with lowest sea states on the top (Beaufort 0–1) and highest (Beaufort 5) on

the bottom. The solid line shows the average estimated detection function.

bias regression method was used to estimate the expected mean
group size within this truncation distance. Truncation distances
were 1.3 km for Dall’s porpoise (eliminating 13% of the most
distant sightings) and 3.6 km for large whales (eliminating 12%
of the most distant sightings).

Habitat Variables and Model Validation
SST and depth were included in the best models for all three
species, but the shape of the relationships differed, reflecting the
unique areas of high density for each species within the CalCOFI
study area (Figure 3). Short-beaked common dolphin occurrence
was highest in the deepest and warmest waters in the study area,
with encounters dropping substantially in water temperatures
below about 16◦C (Figure 3A). The highest numbers of Dall’s
porpoise occurred in cool waters off the slope, with abundance
dropping substantially in water temperatures greater than∼16◦C
(Figure 3B). Humpback whale numbers were highest in the
coolest waters in the study area, occurring primarily over the
continental shelf and slope (Figure 3C).

The short-beaked common dolphin encounter rate model
explained 18.4% of the deviance. Deviance explained by the single
response models was 21.7% for Dall’s porpoise and 25.5% for
humpback whale. The ratios of observed to predicted density
for all species summarized over all years for the entire study
area were close to unity for short-beaked common dolphin and
humpback whale, and within 8% of unity for Dall’s porpoise
(Table 2). Similar to previous analyses of summer/fall data,
the individual yearly ratios were highly variable, reflecting the
reduced predictive ability for any specific year, due in large part to
the smaller sample sizes resulting from data stratification (Barlow
et al., 2009; Becker et al., 2010; Forney et al., 2012).

The multi-year average density surface plots captured
observed distribution patterns for all three species (Figure 4).
Short-beaked common dolphins were broadly distributed
throughout the southern portion of the study area, with a notable
swath of very low density between higher density regions near
the coast and offshore, and highest densities in the southwest
portion of the study area (Figure 4A). Predicted densities of
Dall’s porpoise were highest in the northern portion of the
study area, dropping off south of Point Conception (34.4◦N;
Figure 4B). Model predictions for humpback whale revealed a
largely nearshore distribution, with highest densities in the north,
particularly in Monterey Bay (36.8◦N) and northern coastal
waters (Figure 4C).

Seasonal Comparison
Multi-year average density plots for summer and fall based
on habitat models developed from a separate set of systematic
ship survey data by Becker et al. (2016) reveal differences in
seasonal distributions for all three species, particularly short-
beaked common dolphin (Figure 5). In winter/spring, the
highest short-beaked common dolphin densities occurred in the
southwest portion of the study area, with decreasing density to
the north and east, and a secondary region of higher density
nearshore within the Southern California Bight (Figure 5A).
This distribution pattern was generally reversed during the
summer/fall, with highest densities throughout the Bight and
decreasing to the southwest portion of the study area, where some
of the lowest densities were predicted. There were low densities
and few sightings of short-beaked common dolphins north of
Point Conception during the winter/spring surveys, in contrast to
high densities and multiple sightings to the north in summer/fall
(Figure 5A).
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FIGURE 3 | Functional forms for variables included in the final encounter rate (short-beaked common dolphin) or single response (Dall’s porpoise and

humpback whale) models for (A) short-beaked common dolphin, (B) Dall’s porpoise, and (C) humpback whale. Predictor variables in the final models included:

SST, sea surface temperature; sdSST, standard deviation of SST; MLD, mixed layer depth; PEA, potential energy anomaly; SSH, sea surface height; sdSSH, standard

deviation of SSH; depth, bathymetric depth; and slope, bathymetric slope. The y-axes represent the term’s (linear or spline) function, with the degrees of freedom

shown in parentheses on the y-axis (linear terms are represented by a single degree of freedom). Zero on the y-axes corresponds to no effect of the predictor variable

on the estimated response variable. Scaling of y-axis varies among predictor variables to emphasize model fit. The shading reflects 2× standard error bands (i.e., 95%

confidence interval); tick marks (“rug plot”) above the X-axis show data values.

Differences in seasonal distribution patterns of Dall’s porpoise
were also evident (Figure 5B). Greatest densities occurred north
of about 34◦N during both seasons, but densities were markedly
greater and there was a southward shift in distribution during
the winter/spring. The general distribution pattern of humpback

whale also differed between seasons, with higher densities south
and offshore in winter/spring (Figure 5C).

A comparison of our winter/spring model-based abundance
estimates to those derived using similar methods from a separate
set of summer/fall surveys conducted in 1991–2009 (Becker

Frontiers in Marine Science | www.frontiersin.org 8 May 2017 | Volume 4 | Article 121

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Becker et al. Seasonal Differences in Cetacean Distributions

TABLE 2 | Yearly and overall ratios of line-transect over model-predicted

density estimates for the total study area as calculated for each segment

and summed.

Year Short-beaked common Dall’s Humpback

dolphin porpoise whalea

2005 0.707 1.106 1.000

2006 0.272 0.961 0.478

2007 2.342 1.766 0.000

2008 1.110 0.498 0.218

2009 1.057 0.907 0.000

2010 0.279 0.201 1.739

2011 1.213 1.406 0.475

2012 0.365 0.604 0.000

2013 1.556 0.588 1.818

2014 2.175 0.977 4.338

2015 0.949 0.861 1.793

All Years 0.999 0.924 1.019

aThere were no humpback whale sightings in 2007, 2009, or 2012.

et al., 2016) revealed large seasonal differences in the numbers
of animals present in the CalCOFI study area (Table 3). The
winter/spring abundance estimate for short-beaked common
dolphin was 70% lower than the point estimate for summer/fall.
For both Dall’s porpoise and humpback whale, abundance
estimates were substantially greater in winter/spring; almost
seven times higher for Dall’s porpoise and more than double for
humpback whale (Table 3).

DISCUSSION

This is the first study to produce spatially-explicit estimates of
winter/spring density and distribution for short-beaked common
dolphin, Dall’s porpoise, and humpback whale off California
based on line-transect data collected during these seasons. The
overall study area abundance estimates are similar to those
derived previously using line-transect analyses (Campbell et al.,
2015), but the habitat models provide fine-scale detail in spatial
density patterns that are more useful for conservation and
management applications. Given the increased use of SDMs
to help evaluate and reduce potential risks to cetaceans (e.g.,
Redfern et al., 2013; U.S. Department of the Navy, 2015),
and the documented high degree of seasonal variability in the
distribution of cetaceans in the study area (Dohl et al., 1986;
Green et al., 1992, 1993; Forney and Barlow, 1998; Becker et al.,
2014; Douglas et al., 2014; Henderson et al., 2014; Campbell et al.,
2015), it is critical to develop seasonally-explicit SDMs.

Campbell et al. (2015) were able to provide separate line-
transect abundance estimates for winter and spring seasons;
however, in our study sighting data were not sufficient to develop
separate habitat models for the two cool seasons. The use of
passing mode on the CalCOFI surveys clearly hampers the ability
of observers to positively identify species. Data available for
this study included cetacean sightings from 20 separate surveys
conducted over an 11-year period, yet sightings were sufficient to

FIGURE 4 | Predicted densities and uncertainty measures from the

winter/spring habitat-based density models for (A) short-beaked

common dolphin, (B) Dall’s porpoise, and (C) humpback whale. Panels show

the multi-year average (Average) density based on predicted 8-day cetacean

species densities covering the survey periods (winter/spring 2005–2015), as

well as the standard deviation of density [SD (Density)], and the 90%

confidence limits (Low 90% and High 90%). Density ranges were selected to

encompass all values within the confidence limits. Predictions are shown for

the study area (385,460 km2 ). Black dots in the average plots show actual

sighting locations from the CalCOFI winter/spring ship surveys for the

respective species.
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FIGURE 5 | Predicted densities from the winter/spring habitat-based

density models from this study compared to summer/fall density

predictions based on Becker et al. (2016) for (A) short-beaked common

dolphin, (B) Dall’s porpoise, and (C) humpback whale. Panels show the

multi-year average (Average) density based on predicted 8-day cetacean

species densities covering the survey periods for winter/spring (January–April,

2005–2015) and summer/fall (July–November, 1991–2009). Density ranges

are those selected for the winter/spring period and are consistent between

seasons to emphasize differences. Predictions are shown for the study area

(385,460 km2 ). Black dots show actual sighting locations from the 2005–2015

winter/spring ship surveys and the 1991–2009 summer/fall ship surveys,

respectively.

develop habitat models for only three species (Table 1). Further,
even for these three species the number of sightings available
for modeling was limited and did not allow for internal cross
validation. Therefore, it is important to continue to collect
cetacean survey data during future quarterly CalCOFI surveys
to allow model validation and development of more robust
models with greater sample sizes. Given the large differences that
Campbell et al. (2015) found in abundance between winter and
spring for all three species, it also will be important to develop
habitat models separately for winter and spring when sufficient
sighting data are available.

To help reduce the downward bias associated with the high
numbers of unidentified sightings, we applied correction factors
to the model-based density estimates for short-beaked common
dolphins and humpback whales based on the proportion
of unidentified animals within higher taxonomic categories
(Delphinus spp. and unidentified large whales, respectively) that
were within the truncation distances. While there are alternative

TABLE 3 | Abundance and density estimates derived from habitat-based

models for winter/spring (January–April; this study) and for summer/fall

(July–November) by Becker et al. (2016) based on line-transect survey

data collected during seven systematic ship surveys conducted from July

to November between 1991 and 2009.

Species Model for winter/spring Model for summer/fall

2005–2015 1991–2009

Abundance Density Abundance Density

Short-beaked

common dolphin

151,194 0.3923 215,674 0.5595

Dall’s porpoise 41,277 0.1071 5,990 0.0155

Humpback whale 1,490 0.0039 636 0.0016

The Becker et al. (2016) estimates were re-calculated for the full CalCOFI study area

(∼385,460 km2 ) considered in this study.

methods for assigning species to sightings not fully identified
to this taxonomic level, many classification approaches (e.g.,
Roberts et al., 2016) require large numbers of positive species
sightings that were not available in our modeling dataset. In
our study, we chose to apply a correction factor to account
for the unidentified species sightings; this introduces additional
uncertainty in our density estimates but reduces the substantial
downward bias that would have otherwise been present.

Species-specific as well as segment-specific estimates of both
ESW and g(0) were incorporated into the models based on the
recorded viewing conditions on each segment, using coefficients
estimated herein for ESW and by Barlow (2015) for g(0).
Incorporating these segment-specific correction factors into the
habitat models improved the accuracy of the resulting abundance
estimates. However, the model-based density estimates we
present in this study are still biased-low given that the g(0)
estimates were derived based on survey data that used three
observers andmore powerful binoculars (Barlow, 2015). They do,
however, account for a greater number of biases than Campbell
et al. (2015), who did not apply corrections for unidentified
animals or sea-state specific trackline detection probabilities.

The winter/spring distribution patterns reflected in the multi-
year average density plots are generally consistent with past
observations, as discussed below for each of the three species.

Short-Beaked Common Dolphin
Forney and Barlow (1998) identified a significant southerly
shift in common dolphin distribution off California during
winter/spring, with most animals found south of Point Arguello
(34.58◦N) during the cool seasons. This southern shift in
distribution was also noted by Campbell et al. (2015) who
also found that all short-beaked common dolphin sightings in
winter/spring 2005–2013 were south of 34◦N. The distribution
pattern reflected in the modeled density predictions was
consistent with these studies, as all mid- to high-density regions
were predicted south of Point Arguello (Figure 4A).

Based on a statistical comparison of numbers of common
dolphins inshore or offshore of the 2,000m isobath, Forney
and Barlow (1998) also identified a significant inshore shift
in winter/spring. This inshore shift was also captured in an
across-season habitat modeling study (Becker et al., 2014).
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FIGURE 6 | Multi-year average density predictions from the

short-beaked common dolphin model shown in Figure 4A overlaid on

the Forney and Barlow (1998) aerial survey study area (black solid line),

showing that the western edge of the study area is east of the offshore

mid- to high-density region identified in this study and noted by

Campbell et al. (2015).

Campbell et al. (2015) noted that the majority of short-beaked
common dolphins observed in winter/spring were found further
offshore in pelagic waters off the continental shelf, seemingly
contradictory to the findings of Forney and Barlow (1998) and
Becker et al. (2014). However, the winter/spring aerial survey data
used in the latter two studies did not extend as far offshore as the
area where Campbell et al. (2015) identified high concentrations
of sightings and where our habitat model estimated mid-
to high-densities (Figure 6). Consequently, the winter/spring
distribution patterns noted for short-beaked common dolphins
in all three of these studies are consistent and show a broad
distribution throughout the southern portion of the study area,
with a notable swath of very low density between higher
density regions near the coast and offshore (Figure 4A). Our
winter/spring habitat model for short-beaked common dolphin
captured both the near- and offshore regions of higher density,
thus helping to resolve the apparent inconsistencies of these past
studies.

The swath of low density running through the study area from
northwest to southeast as predicted by the short-beaked common
dolphin model (Figure 4A) is a pattern that has not previously
been documented for this species. There was concentrated survey
effort in this region and the lack of sightings is consistent

FIGURE 7 | Monthly sea surface temperature composite for a

representative cool season period (December 2015) for the U.S. west

coast, showing the cool water extending southeast from Point

Conception (34.4◦N). This cool-water region corresponded to the lowest

densities of short-beaked common dolphin shown in Figure 4A, and the

general southern extension of Dall’s porpoise shown in Figure 4B, coincident

with water temperatures of roughly 16◦C. The study area boundary is shown

with a solid black line. SST data provided courtesy of NOAA CoastWatch:

(http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowser.jsp).

with the modeled predictions (Figure 4A), so this is not a
modeling artifact or sample size limitation. Rather, this band
of predicted low density is likely a result of prevailing ocean
conditions during winter and spring, when cold water extends
from Point Conception southeastward, serving to bifurcate the
study area (Figure 7). Short-beaked common dolphins are a
warm temperate to tropical species, and based on the models
developed here as well as in previous studies (Becker et al.,
2010, 2012, 2014, 2016; Forney et al., 2012), densities are
greatest when waters are warmest, so there appears to be some
avoidance of these areas with cool, upwelled water. Interestingly,
genetic differences between short-beaked populations have been
identified, with an apparent separate stock occurring in the
Southern California Bight (Chivers et al., 2003), corresponding
roughly to the nearshore areas of higher density identified by the
habitat model (Figure 4A). The separate areas of higher density
regions near the coast and offshore identified by the habitat
model provide additional support that there may be separate
stocks of short-beaked common dolphins off California.

A comparison of density predictions from winter/spring vs.
summer/fall habitat models also revealed marked differences
for short-beaked common dolphin (Figure 5A). As discussed
above, during winter/spring short-beaked common dolphins
occur generally south of 34◦N, with mid- to high-density
regions near the coast and offshore, and highest densities in
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the southwest portion of the study area (Figure 5A). During
summer/fall, some of the lowest densities were predicted for
the southwest portion of the study area, with high densities
extending well north of 34◦N (Figure 5A). The notable difference
in seasonal density patterns predicted for short-beaked common
dolphin emphasizes the value of developing year-round SDMs for
assessing and minimizing potential impacts. This is particularly
important in regions with substantial seasonal, interannual, and
decadal variability, such as the California Current Ecosystem.

Dall’s Porpoise
Statistically significant seasonal shifts in the distribution of
Dall’s porpoise north and south of Point Arguello have been
documented, with animals moving south in winter/spring
(Forney and Barlow, 1998). These patterns were more recently
confirmed in a study that evaluated across-season habitat models
and found that densities of Dall’s porpoise were notably higher
in the Southern California Bight during winter/spring (Becker
et al., 2014). Predicted densities from our winter/spring model
are consistent with these past studies and sighting data, with
moderate densities of Dall’s porpoise south of Point Arguello and
in the Bight (Figure 4B).

Distribution patterns based on the winter/spring habitat
models were substantially different than those of summer/fall,
with the latter predicting very low densities in the Southern
California Bight and offshore, and highest predicted densities in a
more concentrated band closer to shore at latitudes between 34◦

and 38◦N (Figure 5B). The increase in Dall’s porpoise density in
waters off Southern California in winter/spring was also noted by
Campbell et al. (2015), who found significantly higher densities
in winter/spring than summer/fall.

The seasonal distribution patterns shown here are consistent
with previous studies that have shown Dall’s porpoise to be
associated with cool, upwelling-modified waters of the U.S.
west coast (Forney, 2000; Becker et al., 2010, 2012). The
functional form of the SST variable in the winter/spring model
shows numbers of Dall’s porpoise dropping rapidly in water
temperatures higher than about 16◦C (Figure 3B), consistent
with findings from previous summer/fall habitat modeling
studies based on a different survey data set (Forney, 2000;
Becker et al., 2010, 2012, 2014, 2016). As noted above for
short-beaked common dolphin, during winter and spring cold
water upwelling near Point Conception typically moves to
the south/southeast (Figure 7), corresponding well with the
southward extension of Dall’s porpoise distribution during these
seasons (Figure 5B).

Humpback Whale
The majority of humpback whales that feed off California from
spring to fall migrate to breed in waters off mainland Mexico
and Central America during the winter months (Calambokidis
et al., 2000; Barlow et al., 2011b). However, humpback whales
have been sighted year-round off California (Dohl et al., 1978,
1983; Forney and Barlow, 1998; Campbell et al., 2015). Forney
and Barlow (1998) found that a significantly greater proportion
of the humpback whale population was found farther offshore
during the winter than the summer, a finding confirmed more

recently by Campbell et al. (2015). Our findings are consistent
with these results, as the model-predicted distribution pattern
for winter/spring extends much further offshore than in the
summer/fall (Figure 5C).

Density estimates for humpback whale derived for Southern
California waters using line-transect analyses were higher in
spring and winter than summer and fall (Campbell et al.,
2015), consistent with our model-derived density estimates
for the full CalCOFI study area, which were more than
double similarly derived model-based estimates for summer/fall
(Table 3). This is consistent with previous acoustic monitoring
and line-transect studies that showed peak vocalizations and
density, respectively, in spring (Helble et al., 2013; Campbell
et al., 2015). The documented increase in the number of
humpback whales off California in spring, in combination with
the predicted offshore distribution pattern, supports a previous
hypothesis that both the California feeding population and
migrants traveling to areas north of California are present
during this season (Forney et al., 1995; Calambokidis et al.,
1996).

Large whale species are subject to entanglement in fishing
gear off the U.S. west coast (Saez et al., 2013; Feist et al., 2015),
and recently the number of humpback whales entangled in
fishing gear off central California has increased1, particularly
during spring. To help establish policies to avoid or minimize
entanglement risk, there is a need to understand the spatial and
temporal overlap of whales and fishing gear. Although the spatial
resolution in our current study may be too coarse for evaluating
spatial risk of entanglement in nearshore waters, they are the
first spatially-explicit models of humpback whale distribution for
winter/spring and can provide a foundation for further fine-scale
modeling efforts.

CONCLUSIONS

The new habitat-based density models developed for short-
beaked common dolphin, Dall’s porpoise, and humpback whale
in this study offer spatially-resolved seasonal densities, in support
of the assessment and mitigation of anthropogenic impacts.
The models have also expanded our knowledge of seasonal
changes in density and distribution patterns of these three species
off central and southern California. The spatial extent of the
seasonal differences in distribution patterns emphasizes the need
to develop winter/spring models for additional species as data
permit, and ideally develop separate models for each season.
Future studies should evaluate the potential for combining the
year-round CalCOFI survey data with sighting data collected
during summer and fall of 1991–2014 during the Southwest
Fisheries Science Center surveys off the U.S. west coast (Barlow,
2016). Hierarchical Bayesian methods would allow such different
datasets to be combined effectively to maximize sample sizes,
increase the temporal and spatial coverage of the sighting data,
and further improve density estimates and models of seasonal
distribution patterns in this highly dynamic ecosystem.

1http://www.opc.ca.gov/webmaster/ftp/project_pages/whale-entanglement/

EntanglementUpdates2014-2016.pdf.
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